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SPECULAR LITHIUM DEPOSITS FROM LITHIUM
HEXAFLUOROARSENATE/DIETHYL ETHER ELECTROLYTES

V. R. Koch*l, J. L. Goldman*, C. J. Mattos and M. Mulvaney
EIC Laboratories, Inc., 55 Chapel Street, Newton, MA 02158

ABSTRACT

A new class of aprotic organic electrolytes in which to cycle the

lithium electrode has been developed. Blends of diethyl ether (DEE) and

tetrahydrofuran (THF) incorporating LiAsF6 have been found to afford Li

electrode cycling efficiencies in excess of 98%. In addition, specular

deposits of up to 10 C/cm2 may be plated from these systems. The kinetic

stability of these blended electrolytes toward Li is thought to be due to

the formation of a protective lithium ethoxide film.

INTRODUCTION

Our ongoing search for electrolytes suitable for use in ambient

temperature secondary Li batteries has led us to investigate solutions of

LiAsF6 in propylene carbonate (PC) (1), tetrahydrofuran (THF) (2), and

2-methyltetrahydrofuran (2-Me-THF) (3). Average cycling efficiencies for

the Li electrode in these media are 84, 88, and 96%, respectively (1 coul

Li/cm2 at 5 mA/cm2 ). In this paper, we elaborate on the discovery of a

class of diethyl ether (DEE)-based electrolytes which afford cycling effi-

ciencies in excess of 98% (4,5). Moreover, Li plate morphologies are so

regular and dendrite-free that they may be deemed specular in appearance.

*Electrochemical Society Active Member.
1 Present Address: Covalent Associates, Framingham, MA 01701.
Key words: organic, electrolyte, lithium battery.
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Electrolytes comprising DEE have found use in ambient temperature

Li primary batteries (6). More recently, Higgens reported on the stability

of purified DEE toward Li and found that iM LiAsF6 /DEE was stable for over

one month at 71 0 C (7). To our knowledge, however, no reports of DEE-based

electrolytes employed in secondary Li batteries have surfaced in the open

literature.

While a variety of cosolvents have been found to improve the con-

ductivity of LiAsF6 /DEE electrolyte without degrading Li cycling performance

(5), the best electrolyte to date comprises a 90:10 V/V mixture of DEE and

THF, 2.5M in LiAsF6.' We refer to this mixture as Blend-90 (B-90). This

paper explores the variation of Li half-cell cycling efficiency with LiAsF6

with the addition of asymmetric ether cosolvents.

EXPERIMENTAL

General. All purification procedures subsequent to distillation

and the electrochemical experiments were conducted at ambient temperature

under Ar atmosphere in a Vacuum-Atmospheres Corp. dry box equipped with

a Model He- 493 Dri-Train.

Materials. Tetrahydrofuran (THF), acetonitrile (CH3 CN), dimethoxy-

ethane (DME) (Burdick and Jackson, distilled-in-glass), diethyl ether (DEE)

(Fisher, anhydrous), lithium hexafluoroarsenate (LiAsF6) (U.S. Steel Agri-

Chemicals, electrochemical grade), lithium perchlorate (LiC1O4 ) (Anderson

Physics, highest purity) and lithium tetrafluoroborate (Foote Mineral

Company) were used as received. Lithium foil (15 mil) was obtained from

Foote Mineral Company sealed under Ar. 2-Methyltetrahydrofuran (2-Me-THF)

and 1,3-dioxolane (Aldrich) were distilled off Call2 under Ar from a
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Perkin-Elmer Model 251 Auto Annular Still. The reflux ratio was 5:1; only

the middle 60% fraction was collected. Ethylene oxide and dimethyl ether

(Matheson Gas Products) were passed through a Drierite column prior to

being introduced into an electrolyte. Methyl ethyl ether and methyl

n-propyl ether were synthesized and purified according to literature pro-

cedures (8).

Activated neutral alumina (Woelm 200 neutral, activity grade Super 1)

was used as received and exposed only to the dry box atmosphere. Approxi-

mately lg desiccant per 5 ml solvent was used in a given purification

procedure. The first 10% of solvent eluting through the column was dis-

carded.

Blended electrolytes were prepared as follows: A stock solution of

2.5M LiAsF6/THF was prepared according to our alumina-preelectrolysis

alumina (APA) method (2b). Aliquots of the stock solution were then added

to the appropriate amount of LiAsF6/DEE to give the desired salt concentra-

tion and relative solvent volumes. The LiAsF6/DEE solutions were prepared

at ambient temperature by adding the salt to DEE passed through alumina.

Cells and Electrodes. Glass rectangular cells (10 x 40 x 60 mm,

Vitro Dynamics) were used for the galvanostatic cycling of Li in a half-

cell configuration. The working electrode was a 5.5 cm x 3.8 cm x 5 mil

strip cut from Ni 200 or electrolytic Cu sheet (Roblinger). The counter

electrode was fabricated from 15 mil Li ribbon. Details regarding cell

assembly, Li cycling experiments and the galvanostatic preelectrolysis

technique may be found elsewhere (3c).

Photomicrographs of plated Li were obtained by modifying a 32 mm

threaded connector (Ace Glass, No. 7644) and mating it with a threaded
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Teflon base (Fig. 1). The top of the adapter was fitted with optical glass;

a side arm sealed with a septum allowed the cell to be filled with approxi-

mately 15 ml electrolyte. The working electrode consisted of a stainless

steel shaft (3 mm dia) press fit into polypropylene. Two Li counter

electrodes, each 1 cm2, were mounted in stainless steel screws. Connec-

tions were made at a constant current source at the base of the cell.

Linear sweep experiments employed a 5 mm diameter vitreous carbon

disk working electrode (Tokai) sealed in Pyrex. The counter electrode

was Li, and the reference electrode was an Ag wire immersed in 0.1M

AgNO3 /CH3 CN. The reference electrode was separated from the working

and counter electrodes by a fritted cumpartment.

Chonopotenticmetric plating and stripping of Li on a Li substrate

was conducted with a constant current power supply and an automatic cycler

(both constructed in-house). The latter allowed plating for a given period

of time, then stripped to a preset potential (1.OV anodic of the stripping

potential). Upon reaching this potential, stripping was terminated and the

cell reverted to open circuit until plating again commenced.

The Li cn i cycling procedure was as follows: A known charge of

Li, typically 4.5 coul/cm2 , was plated onto a Ni electrode. Then, a

lesser charge (1.1 coul/cm2 ) was sequentially stripped from and plated to

the original Li plate. After the first 1.1 coul/cm2 strip, a 3.4 cool/cm2

reservoir of excess Li remained. Were each cycle 100% efficient, the cell

would cycle indefinitely with a 3.4 coul/cm2 reserve of Li (efficiency -

Q stripped/Q plated). Of course, each stripping cycle is <100% efficient

which means that each strip cuts into the Li reserve yielding an apparent
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"100%" cycle until the Ni substrate is reached. At this point the excess

Li is exhausted and one may calculate the average efficiency per cycle,

E as in Equation 1,

Qex

Qs

where Qs is the charge of Li stripped, Qex is the amount of excess Li, and

n is the number of "100%" cycles.

RESULTS AND DISCUSSION

Cycling Efficiencies of LiAsF6/DEE:THF Blended Electrolytes. Figure

2 shows the effect on E of adding aliquots of 1.5M LiAsF 6 /DEE to 1.5M

LiAsF6/THF. From an 88% average cycling efficiency for THF alone, the

efficiency values rise to a maximum of about 98% for 1.5M LiAsF6/DEE:THF

(95:5), a Blend-95 electrolyte. Reproducibility for a given batch of

electrolyte is excellent. In one experiment, for example, three B-95

cells run simultaneously gave 143, 145, and 147 "100%" cycles. In terms

of E, this works out to efficiency values of 97.84, 97.87, and 97.89%,

respectively.

On going from 1.5 to 2.5M LiASF6/DEE:THF electrolyte, even better

efficiencies may be obtained due to better electrolyte conductivity. The

dependence of R on LiAsF6 concentration for B-90 electrolyte may be seen

in Fig. 3. Beyond 2.5M LiAsF6 , electrolyte viscosity increases, thereby

reducing the conductivity. The peak in E for 2.5 and 1.5M LiAsF6/DEE:THF

occurs in the B-90 to B-95 range. This may reflect the desirability of

complexing each Li+ with four THF molecules.

The decrease in conductivity on going from 1. 5M LiAsF6/THF to

1.5M LiAsF6/DEE is present in Fig. 4. Thus, one may wish to trade off



cycling efficiency for better conductivity in battery applications requiring

higher rate capabilities.

Specular Li Deposits. In our experience, morphologically smooth,

dendrite-free electrodeposits lead to high cycling efficiency. Of all of

the electrolytes we have studied (1-3), the LiAsF6/blended DEE media

afford the most adherent and reflective plates. Figure 5 shows how

reflectivity is maintained from a bare stainless steel electrode (A), to

2 C/cm2 (B), to 10 C/cm2 (C) at 1 mA/cm2 . Beyond 10 C/cm2 , the Li surface

becomes granular in appearance with a corresponding loss in reflectivity.

However, dendrite-free plates of up to 50 C/cm2 at 1 mA/cm2 may be obtained

in this cell under flooded electrolyte conditions.

There has been one earlier report of specular Li deposits in the

literature. Reddy achieve'd a reflective 0.9 C/cm2 Li plate at 0.1 mA/cm2

from a 0.lM LiBr/PC electrolyte (9). The blended LiAsF6/DEE electrolytes

clearly outperform LiBr/PC by an order of magnitude both in rate and in

plate thickness.

Effect of Substrate on Cycling Efficiency. Earlier work with Li

primary batteries has shown that surface amalgamation of the negative

affords a more reproducible cell discharge (10), and better contact between

Li and a metallic current collector (11). With this in mind, we set out

to explore the effect of a thin Hg film amalgamated onto a Cu substrate.

Degreased Cu working electrodes were abraded with alumina in a glove box

and then dipped into Hg. A mirror-like Hg film formed on the Cu surface

which served as a base onto which Li was plated. In Table 1, we see that

presence of the thin Hg film affords almost twice as many cycles from the
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3.4 C/cm2 base as does bare Ni or Cu. With a thicker Qex of 16.9 C/cm2 ,

over 1000 "100%" cycles were obtained. In this particular experiment, no

dendrites were observed until after 450 cycles. This cell was terminated

at 1076 cycles due to dendrite bridging, not because the Qex was exhausted.

Thus, one would expect even better cycling behavior by employing separators.

Effect of Ethereal Cosolvents other than THF. In the process of

evaluating other ethers as cosolvents with DEE, we noted a striking

difference in cycling performance when asymmetric ethers were used. The

data in Table 2 show that the addition of methyl ethyl ether or methyl n-

propyl ether to LiAsF6/DEE disasterously reduces the Li cycling efficiency.

It is known that R-O-R' bond cleavage is sensitive to variances in the

inductive effect of R and R' (12). But on going from Me-O-Me to Me-O-Et

to Et-0-Et, changes in the inductive effect or leaving group stability

are so slight that the dramatic change in cycling efficiency cannot be

explained by C-0 cleavage. It is more likely that asymmetric ethers play

a subtle but important role in deleteriously affecting Li plate morphology

on charge.

Mechanistic Considerations. Earlier work with THF and the methylated

THFs ind.cated that poor cycling efficiency could be ascribed to solvent

reduction by Li (2,3). The rate-determining step in this process was taken

to be a one-electron transfer from Li to the lowest unfilled molecular

orbital (LUMO) of the ether molecule (Equation 2).

slow -
Li + R-O-R sl- R--R, Li+ (2)

Subsequent C-0 cleavage and further reduction by Li leads to the observed

product stoichiometry (13) (Equation 3).
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2Li + R-O-R -R-Li + + RO-Li+ (3)

In a recent paper (3c), we showed that for a series of cyclic ethers,

those ethers manifesting kinetic stability to reduction by Li were corres-

pondingly easier to oxidize conpared co those ethers which rapidly reacted

with Li. We have since performed more accurate linear sweep measurements

on several cyclic and acyclic ethers. Rather than measuring potential at

an arbitrary current density (3c), we have now determined the peak poten-

tial (Ep) of the ether oxidation wave. These data are tabulated in

ascending order (Table 3) and are ccmpared to the earlier linear sweep

data as well as gas phase ionization potentials from the literature.

We note that variations in the linear sweep data on going from one

ether to another are in excellent agreement regardless of experimental

procedure. There is, however, little, if any, correlation between the

heterogeneous solution phase values and homogeneous gas phase ionization

potential data. This most likely reflects differential solvation energies

on going from neutral ether to a cation-radical, as well as electrode

activation energetics.

Of key importance is the observation that THF and DEE have virtually

identical Ep values. Yet as seen in Fig. 2, E for 1.5M LiAsF6/THF is 88%

while 1.5M LiAsF6/DEE gives an E of 97%. The IP data are also in conflict

with the apparent stability of DEE to Li. DEE is almost 0.1 eV more

difficult to oxidize than THF. If the LUMO argument is appropriate, DEE

should be easier to reduce than THF.

One possibility is that DEE is in fact reduced as rapidly or even

more rapidly than THF. The reduction chemistries yield lithium ethoxide
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from DEE and lithium n-butoxide from THF as by-products. Lithium ethoxide

is soluble only up to 0.035M in DEE while various lithium butoxides have

solubilities in excess of 2M in THF (15). The kinetic stability of DEE

and DEE-blends may be due simply to an insoluble, protective lithium

ethoxide film, electronically insulating but Li+-ion conducting. Since

lithium ethoxide is more soluble in solvents more polar than DEE, increasing

the relative concentration of THF in the blends results in a more rapid

solubilization of the protective ethoxide film. This yields a corresponding

decrease in cycling efficiency. Experiments designed to probe the Li

surface after storage in a series of blended electrolytes will shed light

on this possibility.
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FIGURE CAPTIONS

Fig. I Apparatus used for obtaining photcmicrographs of plated Li.

Fig. 2 Average cycling efficiencies for 1.5 and 2.5M LiAsF6 /DEE:THF

as a function of added DEE. Qex 3.4 C/cm2; Qs = 1.1 C/cm2 ;
ip = is = 5 mA/cm2 .

Fig. 3 Effect of LiAsF6 concentration on E for Blend-90 electrolyte.

Fig. 4 Variation of specific conductance on going frcm 0 to 100% DEE.

Fig. 5 Photomicrographs (15X) of specular Li deposits from 2.5M LiAsF6 /
B-90 electrolyte. (A) 3 mm diameter stainless steel electrode
surface; (B) 2.0 C/cm2 electrodeposited Li; (C) 10.0 C/cm2

electrodeposited Li. i = 1 mA/cm2 .
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TABLE 1

CYCLING RESULTS FOR 2.5M LiAsF6/B-90 ELECTROLYTE
ON VARIOUS SUBSTRATES

Substrate Qex, coul/cm2  Number of "100%" Cyclesa E,_%

Ni 3.4 135 97.8
Cu 3.4 126 97.6
Cu/Hg 3.4 233 98.7
Cu 16.9 433 96.5
Cu/Hg 16.9 1076 98.6

aQs = 1.1 C/cm2 ; ip is = 5 mA/cm2 .

TABLE 2

CYCLING RESULTS FOR ELECTROLYTES COMPRISING
2.5M LiAsF6/DEE: Cosolvent (90:10)

Cosolvent, 10% V/V Number of "100%" Cyclesa E,_%

Me-O-Me 123 97.5
Et-O-Et 150 97.9
Ethylene Oxide 137 97.7
Me-O-Et 6 48.5
Me-O-nPr 6 48.5

a
Qex = 3.4 C/cm2 ; Qs - 1.1 C/cm2; ip = is 5 mA/cm2



TABLE 3

OXIDATION AND IONIZATION POTENTIALS
OF SELECTED ETHERS

Ether Ep, V vs. Ag+/Ag ± 0 .04a E100, V vs. Li+/Lib IP, eV + 0 . 0 2 c

2-Me-THF 2.82 4.15
DEE 3.00 - 9.54
THF 3.05 4.25 9.45

DIOX 3.10 4.31 9.52
DME 3.39 - 9.67

b(ether) = 5 mM in IM LiBF4/CH3CN; v = 100 mV/sec.
Potential at which the current density reached 100 VA/cm2

3

v = 100 mV/sec; Ref. 3c.
cRef. 14.
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